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Curvature of Co-Links Uncovers Hidden Thematic Layers in the
World Wide Web

Jean-Pierre Eckmann∗, Elisha Moses†

Beyond the information stored in pages of the World
Wide Web, novel types of “meta-information” are cre-
ated when they connect to each other. This information
is a collective effect of independent users writing and
linking pages, hidden from the casual user. Accessing it
and understanding the inter-relation of connectivity and
content in the WWW is a challenging problem (1–4). We
demonstrate here how thematic relationships can be lo-
cated precisely by looking only at the graph of hyper-
links, gleaning content and context from the Web with-
out having to read what is in the pages. We begin by not-
ing that reciprocal links (co-links) between pages signal
a mutual recognition of authors, and then focus on tri-
angles containing such links, since triangles indicate a
transitive relation. The importance of triangles is quan-
tified by the clustering coefficient (5) which we inter-
pret as a curvature (6, 7). This defines a Web-landscape
whose connected regions of high curvature character-
ize a common topic. We show experimentally that reci-
procity and curvature, when combined, accurately cap-
ture this meta-information for a wide variety of topics.
As an example of future directions we analyze the neu-
ral network of C. elegans (8,9), using the same methods.

The Web is a graph (10, 11) that is continuously being
expanded by an enormous number of independent agents.
Millions of users add pages in an uncoordinated way, but
in doing so they must obey clear rules on how to address
other pages (12). Beyond the information placed by the
users directly in individual pages, their unified action cre-
ates a cooperative meta-information whose locus is in the
connectivity of the network. By meta-information we mean
here information that is based solely on the graph structure
of the WWW, and which reveals strong contextual group-
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ing. This type of information should be contrasted to that of
a very informative but secluded page, that is an archive of
information (a “wise hermit”). Further on, we will compare
our new meta-information to earlier work.

The billions of pages and links of the WWW create a
maze of confusing and almost unmanageable complexity.
To navigate through it and to find pages of interest, users
rely on the help of search engines (13). These send out
small, automated programs (robots) that roam the Web, re-
trieve links and note keywords as they create a mirror image
of the Web that can be stored within one room of storage
data, ready for easy access. The Web remains intelligible to
its human users precisely because it is constantly analyzed
and monitored by these automatic agents. Robot activity
dominates Web traffic and accounts for up to 70% of the
total queries made at certain sites we studied. Because of
the breadth of their search, robots obtain a clearer view of
the Web than the common user.

It is therefore useful to adopt the perspective of robots,
without having to define meaning or content, looking only
at the identification tag of pages (URL addresses) and their
links (14). To avoid the difficulty of having to know the
complete Web graph we use robots which explore some lo-
cally visible pieces that can be found by starting from a
given page and progressing along its links. An analogy may
be drawn with classical neurobiology (15), where a neuron
takes up dye which then traces out its connections.

Having defined our aim of revealing meta-information
in the form of hidden thematic structures, we implement it
by a novel combination of a number of key ideas: Cluster-
ing, co-links, triangles, and curvature. The clustering re-
groups a “home” page with the pages in its sub-directories.
The co-links are then the result of independent agents link-
ing their pages. Triangles capture transitivity, which we
measure by the associated notion of curvature. Using it,
we show that practically all the connective information de-
pends on co-links. Thus, our method reveals a new geomet-
ric view of the locus of information in networks, which is
not “put there” but “happens” as a collective effect.
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Fig. 1: The reduction of a set of pages and links by
clustering. On the left, local links are black and re-
mote links are blue. On the right, black links are One-
way and the red one is a co-link. Clustering clarifies
connectivity because it allows the links to go through
different pages within the nodes.

In detail, we proceed as follows: The first step of our
method is clustering (16). Once a certain number of pages
have been found by our robot, we regroup them into a node
by lumping together a “home” page with the pages in its
sub-directories. This is useful because:

• Information within a given home site belongs to one
contextual heading.

• The size of the graph is reduced by a factor of 102–
103.

• Connective links that arise from physical proximity
are eliminated, leaving the more relevant remote links.

Working henceforth exclusively with the clustered
graph (like the one on the right of Fig. 1), we introduce
the pivotal notion of co-link for a reciprocal connection be-
tween two nodes A and B (A points to B and B points to
A, the red link in Fig. 1). They are then deemed to be “con-
gruent” (friends, or members in the same interest group).

Co-links are special because, while I can point to your
page I cannot (in general) cause you to point to mine. Con-
gruence therefore indicates an awareness by both nodes of
the other’s existence and content, and a recognition of the
other’s value to their own interests. Since congruence in-
volves mutual recognition, we expect it to be a transitive
property i.e., if sites A and B are congruent, and B and
C are congruent, thenA and C will be congruent with high
probability, forming a triangle. Such triangles signal strong
co-operative content, and would be extremely rare in any
large random graph (17). To quantify the aggregation of

Fig. 2: Illustration of the law of cosines on a sphere
(positive curvature) and a hyperboloid (negative cur-
vature). The triangles have sides 1 and 1 and the same
angleα, but the distances between the ends are differ-
ent: d < d′.

triangles with congruent edges, we define the local curva-
ture at a node n by cn = 2tn/((vn − 1)vn). This quantity
was termed the clustering coefficient in (5). Here, tn is the
number of triangles containingn as a corner, vn is the num-
ber of links leaving n (the valence) and (vn− 1)vn/2 is the
maximal number of possible triangles. We ignore in this the
directionality of One-way links. If the graph is a tree, there
are no triangles, and cn = 0 everywhere, while for any
complete graph (where all nodes are mutually connected)
cn = 1 everywhere.

To see that cn is indeed a quantity like curvature, we
regard the simple geometric picture of Fig. 2: One way to
detect that we are on a curved surface using local measure-
ments is to walk a unit distance on a straight line in two dif-
ferent directions separated by a constant angle α. Connect-
ing the two endpoints completes a triangle, and the length
of the third edge is determined by the curvature. On sur-
faces this relation of triangles to curvature is a natural gen-
eralization of the law of cosines, relating the angle at the
apex and the three sides. For general metric spaces, such as
infinite graphs, this relation is the basis of a mathematical
definition of curvature (7) obtained by comparing triangles
in a continuous metric to their counterparts embedded in
standard manifolds.

The average number of triangles cn at a node n is re-
lated to the average distance between any two of its nearest
neighbors (say n′ and n′′). This distance is measured by
counting links in the shortest path from one node to another,
namely n′ and n′′. Because for co-links this is either 1 (n′

and n′′ directly connected, triangle exists) or 2 (no triangle,
need to go through node n), cn = 2 − 〈r(n′, n′′)〉, where
r is the distance. The average 〈·〉 is taken over all pairs of
nearest neighbors, so that the average triangle has sides 1,
1, 〈r〉. In principle, for One-way links the distance r may
be a large number and can range all the way to infinity (no
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connection), but we shall still use cn as an upper bound on
the connectivity.

We are not aware of a definition similar to the one of
(6, 7) for finite graphs with discrete metric, but it is still
useful to view cn as the curvature of triangles with apex
at n (though cn is normalized to take values between 0
and 1), with cn being perhaps closer to a dimension mea-
surement (18). Equipped with a metric (minimal number
of hops between nodes) and a curvature, the graph of the
WWW can be visualized geometrically. We shall say that it
looks like a hyperboloid when it is tree-like, with exponen-
tial separation of branches that “fan out” (1). See Fig. 3. In
contrast, a highly connected region looks more like a sphere
that is “closed” on itself. Alternately, a random walk by the
robot in the graph will tend to get trapped somewhat longer
in highly curved regions.

Triangles tend to aggregate, creating interest groups
of widely varying size (in terms of the number of mem-
bers), but of small diameter. In general, the border of in-
terest groups is expected to be a sharp interface, but some-
times different interest groups will connect one to another,
typically via a single link (e.g., the member of the “but-
terfly collection” interest group who also belongs to the
“origami” interest group). Our definition of curvature im-
plies that such connecting nodes tend to be hubs, and are
characterized by a low curvature.

While the meta-information of the graph has been noted
before (2, 3), and used for data mining in the influential
works (19,20), we see now some differences with that work.
That approach views a link as conferring “authority” and
searches the WWW for “Authorities” and “Hubs” that point
at them. Based on these ideas the successful search engine
Google was designed; it also lead to the notion of “Com-
munity” (21, 22). Similar investigations of the information
content of linkages are common in other fields, such as
studies of social (23) or paper citation (24) networks. How-
ever, in our case, “authorities” tend to have low curvature,
while nodes recognized by peers get high curvature. (Be-
longing to two groups lowers the curvature by about a factor
2.)

We tested our general ideas in several Web crawls, en-
compassing over one million URL’s of which over three
hundred thousand were actually accessed. The database is
stored for offline analysis, while intermediate results are
used to direct the further action of the robot. Large num-
bers of links in a page (indicating the page is a hub) tend to
stall the crawl, and we followed at most 35 links per page,
neither were .cgi, .jpg explored. As an aside, we note
that .com sites seem to make little contribution to “coop-
erative content” and connect badly to others.

Fig. 3: Top: 2,125 nodes and 2,755 links of a site
specializing in tango (specifically the music of Piaz-
zolla). The co-links are shown in red, congruence
triangles are enhanced and one-way links are black.
The anchor is red. The sparsity and high connectiv-
ity of the “Congruence” graph are striking. Bottom:A
view of the curvature for the 947 nodes and the 1,307
links of a notorious swiss revisionist (antisemitic) site.
Height above the blue surface is proportional to cur-
vature (of congruence triangles). The One-way graph
is clearly less connected, its links are more likely to
be dangling ends, and it is generally dominated by the
appearance of hubs.
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Anchor URL encountered URL read in Clusters Total links Co-Links

Shakespeare 277,114 69,982 1,560 3,730 321
Needlework 341,398 102,895 1,498 4,440 727
Revisionist 66,771 22,933 947 1,307 67
Piazzolla 47,978 20,404 2,125 2,577 70
Mol. Biol. 318,705 110,286 1,518 6,351 868

Table 1: Data collected in 5 experimental Web crawls. Our protocol ensures that nodes within distance r = 1 of the anchor
are fully explored to a given depth d = 3. The crawls started at sites of literary studies of Shakespeare, instructions for
needlework, a notorious Swiss revisionist site, tango (specifically the music of Piazzolla), and a site for molecular biology.
The link counts are for the clustered graphs.
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Fig. 4: Curvature for the data of Table 1. The quanti-
ties are the mean of the curvature of the anchor and its
nearest neighbors. Full: All links, irrespective of di-
rection. Congruence: Only triangles with 3 co-links.
One-way: Only triangles without co-links. Note that
the curvature is carried basically only by triangles
with at least one co-link.

As the crawl proceeds, clustering according to Fig. 1
is implemented. To that end, links are determined to
be local or remote. A local link is basically one in-
side a given site and any other link is remote. This de-
cision is usually made by looking at the URL and us-
ing the known conventions for naming of pages inside a
home directory (details can be obtained from the authors
at http://mpej.unige.ch/˜eckmann). The algo-
rithm explores a page it encounters by following the local
links down to depth d (and perhaps u upwards, links like
“back to home page”).

Crawls are initialized by choosing a first site (the an-
chor) and fetching it. The links in a fetched page are iden-
tified and entered into the database. Our robot then fetches
all the pages that these links point to. After exhausting the
search down and up the database is clustered and the robot
is sent out along the first remote link. It explores that node
in a similar way, going down and up the newly found local
links as before. Once that is done the robot returns to the
first node and follows the next remote link, until all remote
links at distance r = 1 from the anchor have been followed.
The robot can then be directed to explore r = 2 or sequen-
tially larger distances, if needed.

The breadth of crawls is shown in Table 1, while results
from specific crawls are shown in Figure 3. The curvature
was calculated for all nodes within a distance r = 1 of
the anchor, and for three types of graphs. The ‘Full’ graph
includes all links that were found in the crawl, the ‘Congru-
ence’ graph is composed solely of co-links (the red link of
Fig. 1), and the ‘One-way’ subgraph is obtained from the
full graph by removing all co-links (leaving only the black
links).

Our main result, shown in Fig. 4, is that the average cur-
vatures of the Congruence and Full graphs are very similar,
while that of the One-way graph is lower by a factor rang-
ing between 2.5 and 21. This means that removal of the co-

4



links results in a dramatic decrease of the curvature. The
curvature of the full graph is carried predominantly by
triangles containing at least one reciprocal side. This
curvature is not produced by triangles with three co-links
alone, because of their small relative number, but rather
from triangles that have a combination of co- and One-way
links. To put the results of Fig. 3 in perspective, we note that
the density of triangles (and average curvature as well) of a
random graph tends to zero with the size of the graph (17).

For all experiments, the distribution of curvatures c
among the nodes of the Full graphs obeys a power law,
c = (2.0 ± 0.2)v−1, where v is the valence of the node.
While the scaling is striking, we are not certain of its origin.
It does cause highly connected nodes with high v such as
hubs and authorities to have, on average, a low curvature.
This agrees with our intuition that such nodes contribute
perhaps to global connectivity, but not to the local interest
groups that curvature identifies.

While we consistently avoided any reference to content
of sites in the crawl itself, to check our method a separate,
objective criterion was needed. We therefore checked man-
ually whether the co-links reveal contextual linkages, by
reading in 784 nodes from our crawls (in most cases check-
ing the name of the node sufficed). Indeed, we found that
no less than 75% to 100% of nodes congruent to the anchor
indeed relate to the same topic.

Going beyond the WWW, we examined the effi-
ciency of curvature as a measure of thematic cohesion
by studying three other networks. These are the neu-
ronal network of the nematode C. elegans, the protein-
protein interaction network of the yeast S. cerevisiae and
the citation network of the mathematical-physics archive
http://www.ma.utexas.edu/mp_arc/. In each
case we used an existing database to access and reconstruct
the network, and as a control each had a separate, objec-
tive criterion by which related nodes were grouped into
“themes”.

Our analysis of the neural network of the worm relies on
classic work (8) that used about 8,000 electron microscopy
sections to trace directed neuronal connections (25). The
control classification is the currently accepted association
of neurons with organs found by both morphological and
connective data (8, 9), where the existence of triangles was
indeed noted, though only incidentally.

In Fig. 5 we present the network of the brain of the
nematode. We immediately note three connected compo-
nents of high curvature, color coded to display the asso-
ciation with the major neural circuits, or organs. The el-
evated groups are the amphids, the motor neurons of the
nerve ring and “other” sensory neurons of the head. The

other circuits are either low-curvature (egg-laying and mo-
tor neurons of the ventral cord) or absent from the compi-
lation (25) (tail ganglia). The amphids and nerve ring are
particularly well separated into connected components of
the congruence graph. Furthermore, we find that interneu-
rons (CPU-like neurons) carry more curvature than sensory
(input) or motor (output) neurons, which agrees with our
intuition of how connections should distribute within the
brain. Most co-links (61%) connect neurons that are within
the same functional circuit (72% for co-links within trian-
gles) while most of the One-way links (58%) connect be-
tween two different organs.

For the protein-protein interactions of the yeast
we took the protein-protein interaction database
http://dip.doe-mbi.ucla.edu/dip/Downloa
d.cgi, treating any interaction as a co-link (i.e., there are
no One-way links). The control was taken from the func-
tional classification given in the Yeast Protein Databank
(YPD) at http://www.proteome.com/databases
/YPD/YPDcategories/Functional_Categorie
s.html. We found that proteins within the same
connected groups of high curvature almost always (77% of
the cases) belonged to the same functional grouping of the
YPD. At cn ≥ 0.15 there are 34 such groups, that include
between 3 to 18 members, with an average of 5 proteins
per group, (data not shown).

In the case of the Mathematical Physics archive,
we used the archive http://www.ma.utexas.edu
/mp_arc to define a network of citations between authors
in the same field. A co-link exists if author A cites au-
thor B (in any paper within the archive) and author B cites
A in any paper of his, while co-authors are automatically
co-linked. Note that our definition of co-links is fundamen-
tally different from the co-citations defined in (24), since
there no reciprocal recognition exists. The control we used
here was more problematic, relying on scanning manually
all conference pages listed at the International Mathemat-
ical Physics Association homepage, and including an au-
thor in a group (e.g., “Quantum mechanics”, “Field theory”
or “Statistical mechanics”) if she spoke under that topic in
any of the conferences. However, we were able to classify
only about 400 of the 1700 authors (since not every author
is talking at these conferences). As before, high curvature
selected out the groups we found manually, with 5 of the
20 or so topic groups we defined very strongly represented
and clearly identified (data not shown). Again, “authori-
ties”, which in this case are very polyvalent scientists, have
lower curvature than specialists in a small field, and serve
rather as hubs.

Our discovery opens a number of new possibilities for
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Fig. 5: The worm brain. The height is proportional to curvature. The red nodes are amphid cells, the yellow are other sensory
neurons of the head, and blue are motor neurons of the nerve ring. Only co-links are shown, and triangles are enhanced.
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studying highly assembled complex structures in general,
perhaps even the brain. First, the introduction of geome-
try frees us from the subjectivity of contextual concepts,
such as meaning, content, and the like. The locality devel-
ops a different direction than global notions like scaling in
the WWW and the “small-world” effect. Second, the con-
cept of congruence shows the usefulness of combining ge-
ometry with selective action in probing sophisticated struc-
tures, including C. elegans. In particular, we have seen how
a very simple dynamical rule – the search for congruence
– radically changes our global view of the Web, replacing
statistical aspects with unsuspected relations which can be
found only by looking at combined, independently built,
pathways in the Web. Our approach can certainly be re-
fined and extended in the Web, but should prove useful in
many other contexts.

Our study further shows that robots perceive the Web
differently than the people who actually write and use the
pages. Our robots go back and forth between various sites,
gaining a more coherent view of their relations. We have
shown that the geometric properties of the space in which
they roam and the landscape that they reconstruct reveal
new connective meta-information, hidden from the com-
mon user.

What can one expect in the future? Other forms of
meta-information, not necessarily arising from connectiv-
ity, will certainly be found in the WWW and other complex
networks. The dynamics of developing interest groups is
also an important issue (26, 27) that may involve rapid fu-
sion processes (28). From a mathematical perspective, we
have demonstrated the need for concepts of local curvature
in graphs. Our definition of curvature seems a useful begin-
ning to elicit Web properties, and is easily generalized to
balls of radius r = 2 (next-nearest neighbors) or more, as
well as to simplices like tetrahedra. But more advanced ge-
ometric concepts, measuring non-commutativity in the or-
der of visiting sites, might be needed in the future.
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