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Abstract

We analyze the recent phenomenon termed a Link

Bomb, and investigate the optimal attack pattern for

a group of web pages attempting to link bomb a spe-

cific web page. The typical modus operandi of a link

bomb is to associate a particular page with a search

text and then boost that page’s pagerank. (The at-

tacking pages can only control their own content and

outgoing links.) Thus, when a search is initiated with

the text, a high prominence will be given to the at-

tacked page. We show that the best organization of

links among the attacking group to maximize the in-

crease in rank of the attacked node is the direct indi-

vidual attack, where every attacker points directly to

the victim and nowhere else. We also discuss optimal

attack patterns for a group that wants to hide itself

by not pointing directly to the victim. We quantify

our results with experiments on a variety of random

graph models.

1 Introduction

Generally, a search on a particular topic on a par-

ticular search engine (such as Google) will output a

ranked list of relevent web pages. The prominence

of a page in this listing is an important indicator of

how many people will visit the page. For a commer-

cial web site, its prominence with respect to prod-

uct searches has important financial consequences, as

does the prominence of a competitor’s website with
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respect to slander about products. Prominence in

rankings is prestigious and can add credibility [10].

As a result of the importance attached to one’s

pagerank, especially one’s Google pagerank, artificial

methods for boosting one’s pagerank with respect to

a particular topic have become an active area for dis-

cussion. A prominent case was an attempt to “bring

down the White house” by giving high prominence

(in fact the primo ranking) to a web-biography of

the U.S. President with respect to the text “miserable

failure” [10, 14]. Such attacks are generally termed

Google bombs (named after the success of such at-

tacks on Google rankings), which are attempts to give

prominence to a particular web page with respect to

a particular (usually derogatory) piece of text1. We

study link bombs which attempt to alter the rankings

obtained through the PageRank algorithm by manip-

ulating the links - such attacks would be relevant to

any search engine that uses such a page ranking al-

gorithm. Link bombs need not be derogatory, for

example, a web-retailer could also make use of link

1After the first attack (which was with respect to the text
“talentless hack”), several other attacks also succeeded in rais-
ing the ranks of web pages with respect to specific keyword(s),
in some cases using as few as 25 links. It has been argued
that several factors contribute to the success of an attack,
eg. the number and prominence of the attacking pages; the
(un)popularity of the keyword. Many of these attacks were
usually initiated by Blogs which tend to be updated often and
have a lot of content. It has been argued that these factors
contribute to the high prominence of Blogs which in turn have
higher influence in the pagerank of other pages. Similarly,
some of the keywords chosen were very rare in the web pages,
such as “French Military Victories”. However, even attacks
using keywords as popular as “Weapons of Mass Destruction”
have been successful (BBC News, Sunday, 7 December, 2003).



bombs to improve the prominence of its own web-

site with respect to a particular topic(s). The link

bombers are usually some (coordinated) set of web

pages which add outgoing links to their web page.

Some of these links will point to the attacked page,

and contain the text they (the bombers) are trying

to associate with the attacked page. The issue we

address is how these bombers should organize their

outgoing links in order to maximize the success of

their link bomb.

There is currently a great deal of discussion on

whether a link bomb can be considered an “unde-

sirable” attack [14] that exploits a weakness in the

pagerank algorithm [6, 12]. The pagerank algorithm

assigns you a pagerank by considering the number

and importance (according to PageRank) of web

pages that point to you. Given that a search engine

like Google currently ranks about 8 billion pages, one

would expect that a very small number of web pages

should not be able to change the ranking of a page

dramatically, contrary to what has been observed.

Thus, one motivation for studying the optimal at-

tack is to determine specific abnormal but effective

attack patterns that could be identified as artificial

Google bombs.

We present results on the optimal link bomb.

Specifically, the attackers are a set of web pages

whose outgoing links can be manipulated, and the

victim is the target web page to be bombed. Our

main result is to establish the following theorem as

a starting point for a discussion of accountability on

linked structures such as the WWW,

Theorem. The attack which maximizes the rank

of the victim with respect to page rank is the direct

individual attack.

The direct individual attack is the attack in which

every attacker points only to the victim and to no

other page. In particular, in the optimal attack, none

of the attackers point to each other. Thus, the op-

timal attack masquerades as a set of uncoordinated

“random” nodes, all pointing to the same page. We

also discuss optimal “disguised” attack patterns, in

which none of the attackers wish to directly point to

the victim – all paths from the attackers to the vic-

tim must be of at least some minimum length. In

this case the optimal attack is still a direct individ-

ual attack, however now the attackers point to some

other intermediate node (not the victim).

While the optimal attack is always the direct indi-

vidual attack, the amount by which the direct indi-

vidual attack surpasses other (more coordinated) at-

tack patterns may depend on the nature of the graph.

We give experimental results that quantify this phe-

nomenon for a variety of different attack patterns.

On certain random graph models of the Web, some

coordinated attack patterns are almost as good as

the direct individual attack, and can hence be used

in place of the direct individual attack as a means

of disguising the attack. While the effect of graph

structure on the pagerank has been investigated in

the literature [11, 6], to our knowledge, these are the

first results regarding the effect of the graph structure

on the effectiveness of link bombs.

Our results raise interesting questions such as how

to detect and respond to link bomb attacks (in gen-

eral this problem is NP-hard, see for example [16]).

Since the attackers will have no visible associations

amongst themselves, it is hard to detect and prove

that they are participating in an attack. If the op-

timal attack were a tree structure, there would be

a small set of nodes with high prominence that one

might argue are “responsible” for the attack. The

other nodes pointing to these nodes could also be

held accountable aiding and abbeting the actions of

the responsible nodes. Such accountability is not pos-

sible in an individual attack.

We proceed by first discussing some preliminary

definitions, followed by a preview of our result for

an isolated graph, in which the only nodes are the

attackers and the victim. We then discuss general

graphs, followed by some experimental results on a

variety of random graph models. We conclude with

a discussion of the implications of our results. (We

omit technical proofs which can be found in a full

version of this paper [1].)
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2 Preliminaries

A search query on a set of keywords results in an

ordered list of web pages W = {ωi}. Each web page

ω ∈ W contains some or all of the keywords either

in its text or in the text of a link that points from

some other web page to ω. A scoring function is used

to order the pages in W . The most prominent page

(page with the highest score) is given rank 1, etc.

Google [3] considers many factors in its scoring

function, including: keyword frequency; relative lo-

cations of the keywords; the position and style of the

keywords. An important factor in the scoring func-

tion is the pagerank which depends on how the web

page is embedded in the entire graph of web pages.

An early paper on the Google system [3] suggests

that no one factor dominates the scoring function,

however, the pagerank plays an important role. In

this paper, we will concentrate only on the pagerank

factor and discuss how it can be manipulated.

The web graph is a directed graph G = (V, E) that

models the World Wide Web. The vertex set V rep-

resents the pages and documents, and the edge set

E represents the links between the pages and docu-

ments2. The edges are directed: if (v1, v2) ∈ E, then

v1 contains a link to v2. In a web graph, the in-degree

indeg(v) of page v is the number of links that point

to v and the out-degree outdeg(v) is the number of

links originating from v that point to other pages. A

(directed) path of length ` is a sequence of vertices

v0, v1, . . . , v` with (vi−1, vi) ∈ E for i = 1, . . . , `. v`

is the terminal node in the path, and v1, . . . , v`−1 are

intermediate nodes. We allow parallel edges between

two vertices, but no self-loops.

The pagerank pi models the probability that node

i will be visited either by randomly navigating down

links in the web graph or by randomly jumping to

page i. Let α be the probability to navigate, and

1 − α the probability to jump. Then the pageranks

{pj} of the nodes in a graph simultaneously satisfy

2Note that the definition of an edge is traditionally given
by hyperlinks in a web page. However, it is also possible to
count URLs in the body of a web page as links. The definition
of what constitutes a link is usually application dependent.

the set of linear equations3

pi = α
∑

(vj ,vi)∈E

pj

outdeg(vj)
+

1 − α

N
. (1)

(0 ≤ α ≤ 1 and N = |V |.) The first term repre-

sents the probability to reach i by random naviga-

tion. An edge may appear multiple times if there are

parallel links. The second term represents the prob-

ability to reach i by randomly jumping. Typically,

α ∈ [0.85, 0.95]. pi is larger if vi has a large in-degree,

and its incoming links are from high pagerank nodes

with small out-degree. The PageRank algorithm [12]

is an iterative approach to solving these equations.

The pageranks are all initialized to p0
i = 1

N
. The

PageRank iteration [12] is given by

pt+1
i = α

∑

(vj ,vi)∈E

pt
j

outdeg(vj)
+

1 − α

N
. (2)

pt
i converges to the (unique) solution of (1). Every

page can manipulate its outgoing links, but it cannot

change its incoming links.

A link bomb, or attack occurs when a group of at-

tackers A = {v1, . . . , vK} alters their outgoing links

so as to boost the pagerank of a victim v0 6∈ A. Be-

fore the attack, if the edge set is E, then after the

attack the edge set will be Ē where the only edges

added or removed from E are of the form (vi, u) where

1 ≤ i ≤ K and u ∈ V , i.e., the attackers may remove

and/or add outgoing links only. After the attack,

the new web graph is Ḡ = (V, Ē). Let pi denote the

pageranks in the original graph G (before the attack),

and p̄i the pageranks in Ḡ (after the attack). The

magnitude of the attack ∆p0 = p̄0−p0 is the amount

by which the pagerank of the victim increased, and

is a measure of the success of the attack. In our anal-

ysis, we only consider the magnitude of the attack,

3An alternative and common formulation of the pageranks
in the literature is as the stationary distribution of a suitably
defined finite irreducible Markov chain with transition matrix
P = (1 − α)M + αU , where U is a matrix of 1’s. Many of
our results could be obtained by analyzing how the stationary
distribution changes under perturbations of P . Our approach
is more graph theoretic, treating the problem as a flow.
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and assume that all other factors entering into the

scoring function are unchanged.

3 The Optimal Link Bomb

In this section, we investigate how to maximize the

magnitude of the attack. In particular, we show that

the effectiveness of the attack does not increase if

the attackers try to coordinate the attack in some

way, by introducing links among themselves in order

to increase their ranks. (Recall that, incoming links

from higher ranked pages are more beneficial to your

rank.) First, we consider a simplified case, in which

the attackers and the victim are isolated from the rest

of the graph. We then consider the general case.

3.1 Isolated Graphs

We can restrict our attention to the vertex set com-

posed of the attackers and the victim, V = A ∪ v0

(i.e., N = |V | = K + 1). Assume (for simplicity)

that v0 does not point to any member of A. We first

consider some examples of attacks, before giving the

general result. In all cases, all the attackers A point

to the victim v0, and what differentiates the attacks

is how the attackers are themselves organized.

Direct Individual: The only links are to v0.

Tree: The attackers form a tree. For any graph

with a topological order, one can compute the page

ranks efficiently (in linear time). For analysis pur-

poses, we will specialize to a star attack in which

v2. . . . , vK point to v1 and all attackers point to v0.

Cycle: The attackers form a cycle.

Complete: The attackers a complete graph.

By solving the linear system (1) for the graph result-

ing from each of these attacks, we obtain

Lemma 1 For the isolated graph,

p̄0(individual) = p0(1 + αK),

p̄0(star) = p0

(

1 + α
2 (K(1 + α) + 1 − α)

)

,

p̄0(cycle) = p0

(

1 + αK
2−α

)

,

p̄0(complete) = p0

(

1 + αK
K(1−α)+α

)

,

where p0 = (1 − α)/(K + 1).

Since 0 ≤ α ≤ 1, after some algebra, we obtain

Theorem 1 For the isolated graph,

p̄0(individual) ≥ p̄0(star) ≥ p̄0(cycle) ≥ p̄0(complete).

In fact, the direct individual attack is optimal for the

isolated graph:

Theorem 2 For an isolated graph, p0 is maximized

(uniquely) by the individual attack.

3.2 Arbitrary Graphs

When v0, . . . , vK are embedded in a larger graph G,

the direct individual attack is still optimal. Intu-

itively, one can view the PageRank iteration (2) as

sending a flow of pagerank down the directed edges.

The maximum flow from vi to v0 occurs when vi

points directly to v0, and to no other node – any other

links divert the flow and lead to a lower magnitude

attack. The following results will make this intuition

more formal. We will generally refer to nodes which

are neither the attackers nor the victim by wj , and uj

will be used to refer to any node. The 1-neighborhood

N1(v) of a node v is the set of nodes to which v points.

Nk(v) (k > 1) is the set of k-neighborhood nodes:

u ∈ Nk(v) iff for some w ∈ Nk−1(v), (w, u) ∈ E.

Note that v could be in its own k-neighborhood for

k > 1, and N0(v) = {v}.

Consider attacker vi, and, without loss of general-

ity, assume it initially has no outgoing links. Suppose

now that it adds δ outgoing edges. This results in α
δ

of its rank “flowing” along each of its edges to its
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neighbors (note there may be parallel links). Thus,

the rank increase for a 1-neighbor uj is given by

∆1
j = α

∑

(vi,uj)∈E

pi

outdeg(vi)
,

where the superscript 1 indicates that uj is a 1-

neighbor, and j is an index that enumerates the 1-

neighbors. The sum is over all parallel edges that vi

may have to uj . This increase in rank in turn prop-

agates to 2-neighbors, resulting in an increase in the

rank of a 2-neighbor uk by an amount

∆2
k = α

∑

(uj ,uk)∈E

s.t uj∈N1(vi)

∆1
j

outdeg(uj)
.

The sum is over all 1-neighbors pointing to uk (in-

cluding parallel edges). If the newly added edges cre-

ate a path from vi to v0, then some amount of vi’s

pagerank will propagate to v0. We define ∆l
j to be

the change in the page rank of uj from flow down all

paths of length l from vi to uj ,

∆l
j = α

∑

(uk,uj)∈E

s.t uk∈Nl−1(vi)

∆l−1
k

outdeg(uk)

Let δ(l) be total increase in page rank through paths

of length l, δ(l) =
∑

j ∆l
j . Since the pagerank in-

crease attenuates by a factor α with each edge, we

have the following lemma.

Lemma 2 δ(l) ≤ αlpi, with equality iff δ(l − 1) =

αl−1pi and for every uk ∈ Nl−1(vi), outdeg(uk) > 0.

Let S be a set of nodes. A path q passes through

S if some node of S is an intermediate node of q.

A set of paths P pass through S if every path in P

passes through S. Let Pt be a collection of paths that

passes through S, with every path in Pt having the

same terminal node t 6= vi (t is not an intermediate

node of any path in Pt). We call t a progeny of S

with respect to the paths Pt. Since every path passes

through S, some prefix of every path in Pt has a

terminal node in S. For each path q ∈ Pt, let qS be

a (any) prefix with terminal node in S, and let Pt(S)

denote the collection of such distinct prefixes {qS}.

The influence I(S|Pt(S)) of vi on S is the total

flow of pagerank (summed over all nodes in S) from

vi to S along the paths in Pt(S) (which are (distinct)

prefixes in Pt). The influence I(t|Pt) of vi on t is

the total flow of pagerank that flows to t along the

paths in Pt (which pass through S). Every path in

Pt has at least one additional edge compared with

its corresponding prefix that terminates in S, so the

influence that propagates to t along Pt can be at most

the influence that propagates to S along the paths

in Pt(S), attenuated by a factor α. We have the

following lemma.

Lemma 3 I(t|Pt) ≤ αI(S|Pt(S)), independent of

which prefixes are used in the construction of Pt(S).

We now consider vi’s attack on v0. Let P denote the

collection of all (distinct) paths from vi to v0 in which

v0 appears only as the terminal node, i.e., v0 is not

an intermediate node of any path in P . Note that

if there are cycles in the graph, then P may contain

an infinite number of paths. Let the flow of pager-

ank from vi to v0 down the paths in P be denoted

∆. There may be cycles containing v0, in which case,

the pagerank increase ∆ will continue to flow around

these cycles, back to v0 increasing the pagerank fur-

ther, i.e., ∆ will be amplified by the cycles. Let ∆pi
0

be vi’s contribution to the magnitude of the attack,

∆pi
0(∆) = ∆ + amp(∆),

where amp(∆) is the amplification due to the cycles

that contain v0. The larger ∆, the larger will be the

amplification of ∆,

Lemma 4 ∆pi
0(∆) is monotonically increasing.

Lemmas 2, 3 and 4 are the main tools we will need to

prove our main result, namely that the individual at-

tack is optimal. By Lemma 4, since ∆pi
0 is monoton-

ically increasing in ∆, ∆pi
0 will be maximized when

∆ is maximized. ∆ is given by the sum of the flows of

pagerank from vi to v0 along the paths in P , therefore

we only need to consider this flow.
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Let ` be the length of the shortest path in P (there

may be many such shortest paths). Consider the set

L of all distinct paths of length ` originating at vi.

Some of these paths have terminal node v0. We now

restrict our attention to the set L′ containing those

paths in L which do not have terminal node v0. Note

that none of the paths in L′ can have v0 as an in-

termediate node since the shortest path from vi to

v0 has length `. Let Let S denote the set of terminal

nodes in L′. Partition P into two disjoint sets, P` and

P>`, where P` contains the paths in P with length `

and P>` the paths with length > `. Every path in

P>` must pass through at least one of the nodes in S,

therefore P>` passes through S. Every path in P>`

has terminal node v0, and v0 does not appear as an

intermediate node in any of these paths. Thus, v0 is

a progeny of S with respect to P>`. Every path in

P>` has a prefix of length ` with terminal node in S.

Collect these distinct prefixes into the set P>`(S).

Let ∆` be the contribution to ∆ due to flow along

the paths in P`, and ∆>` the contribution due to flow

along the paths in P>`. Then,

∆ = ∆` + ∆>`
(a)
= ∆`

v0
+ I(v0|P>`),

(b)

≤ ∆`
v0

+ αI(S|P>`(S)),

(c)

≤ ∆`
v0

+ I(S|P>`(S)),

(d)

≤ ∆`
v0

+
∑

s∈S

∆`
s

(e)
= δ(`)

(f)

≤ α`pi.

(a) follows from the definitions of ∆`
v0

and influence;

(b) follows from Lemma 3 and (c) because α ≤ 1.

(d) follows because the paths in P>`(S) are all of

length `, so P>`(S) is a subset of all the paths of

length ` that terminate in S; (e) follows from the

definition of δ(`), since S ∪ v0 = N`(vi); finally, (f) is

an application of Lemma 2. Equality occurs iff S is

empty, and all paths from vi are of length `, ending

at v0. Certainly, the optimal value of ` is 1, and so

we have the following theorem4.

4An alternative proof of this theorem using the Markov
chain approach can be given using a generalization of the result

Theorem 3 ∆pi
0 is maximized if and only if the only

edge from vi is to v0. This is independent of all the

other edges in the graph, in particular independent of

the edges from the other vj.

Theorem 3 directly implies the following result,

Corollary 1 The direct individual attack is optimal.

A related issue is whether the direct individual attack

also maximizes the rank (as opposed to the pagerank)

of the victim. This question is not immediately an-

swered by Theorem 3 since the actual rank depends

on the relative pagerank of v0 with respect to the

other nodes, and not the absolute pagerank of v0.

We will now show that the rank is also maximized by

the direct individual attack.

Suppose that some other attack X maximizes the

rank of v0. This means that for some node u, p̄I
v0

≤

p̄I
u and p̄X

v0
> p̄X

u (I denotes the direct individual

attack). We show that such a situation can never

occur, leading to the following result.

Theorem 4 The direct individual attack maximizes

the rank of v0.

3.3 The Optimal Disguised Attack

We now consider the situation in which the attackers

wish to maximize the magnitude of their attack on

v0, but they wish to disguise the attack by not point-

ing directly to the victim. In such an attack, the

anchor text will be associated to the victim, hence

we assume that the victim already has a high promi-

nence with respect to the anchor text. The specific

disguise constraint we consider is that for every at-

tacker, the shortest path to the victim should have

length at least ` ≥ 1.

Consider attacker vi. In any attack, some amount

of pagerank flows from vi to v0. In any directed

graph, we define f(u; v), the forward value of ver-

tex u with respect to vertex v, to be the fraction of

u’s pagerank that flows to v along paths with v as

in [5], where it is shown that adding the edge (i, j) can only
increase the rank of j.
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terminal node but not as intermediate node. Thus,

for example, f(v; v) = 1. Since the fraction of u’s

rank that makes it to v can be obtained by multi-

plying the fraction flowing to each neighbor with the

fraction flowing from that neighbor to v, we obtain

the forward equation for the forward values f(u; v):

f(v; v) = 1,

f(u; v) =
α

outdeg(u)

∑

(u,w)∈E

f(w; v). (3)

The forward equation (3) is similar to the pagerank

equation (1) and can be solved by an iterative algo-

rithm similar to the PageRank iteration [12].

For every vertex u (not an attacker), we consider

the edge set Eu = E ∪ (vi, u), which defines a new

directed graph in which the edge set is augmented by

a single link from the attacker to u. For this graph,

we can compute the forward value fu(w; v0) of any

vertex w with respect to v0. We define the value

Vi(u) of vertex u to attacker vi by

Vi(u) = fu(vi; v0).

By Lemma 4 the optimal attack is the one that max-

imizes the flow of pagerank to v0, which means that

vi should point to the node u satisfying the “disguise

constraints” that maximizes Vi(u). Arguments simi-

lar to those that led to Theorem 3 give

Theorem 5 The optimal disguised attack for a sin-

gle attacker vi is a single link to the vertex u, at dis-

tance ` − 1 from v0, which maximizes Vi(u).

Unfortunately, the maximizing node Vi(u) need not

be the same for different attackers – the disguise con-

straint introduces dependencies between attackers,

i.e., the optimal attack for a particular attacker may

depend on what the other attackers do. In particu-

lar, it is no longer the case that each attacker using

its optimal disguised individual attack will maximize

the magnitude of the disguised attack if the group of

attackers act jointly. The following example with two

attackers and ` = 2 illustrates the issue.

v2v1

u

v0

w

x

(a) Optimal individual attacks.

v2v1

u

v0

w

x

(b) Optimal joint attack.

The optimal attack for v1 is to point to u for v2 is

to point to w (red dotted arrows in (a)). However,

if both attackers attack, then they should both point

to u. This is generally true,

Theorem 6 There is an optimal joint attack in

which all attackers point to the same intermediate

node u which is distance ` − 1 from v0.

A detailed comparison of the optimal joint attack

with the greedy strategy in which the attackers each

adopt their individually optimal attacks is beyond

the scope of this current paper.

4 Experimental results

In this section, we give some preliminary experimen-

tal results that quantify the effectiveness of Google

bombs in various environments. There are four main

degrees of freedom we explore: the nature of the

graph, including its connectivity or edge density; the

prominence (pagerank) of the attackers; the promi-

nence of the victim; and, the value of α.

We ran our experiments on three types of graphs:

Random is an Erdös-Reyni type (G(n, p)) random

graph with edge probability p; BA (Barabási-Albert)

is a preferential-attachment random graph with 5

outgoing edges per vertex [2]; (Such graphs are

known to have power-law in-degree distributions, and

since we add the vertices sequentially, there are no

cycles.) MWDTA is a modified “Winner’s don’t

take all” random graph in which every node has at
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least one out-going edge method [13]. (Such graphs

are known to model certain characteristics of the

world wide web graph such as power-law in and

out-degree distributions.). The main difference be-

tween MWDTA and BA random graphs is that in

MWDTA, a larger number of nodes will have sig-

nificant indegree, whereas in BA a few nodes have

very large in-degrees. In order to make fair com-

parisons, we normalize graphs from different random

graph models (Random, BA or MWDTA) to have

the same expected number of edges.

First, we generate a random graph with 1,000

nodes, and randomly select 10 attackers and a victim.

We then remove outgoing edges from the attackers

and perform a pagerank computation, obtaining:
p0, the page rank of the victim;
pA, the average pagerank of the attackers;

fp(p), the pagerank distribution in the graph;
σp, the std. dev. of the pagerank distribution.

We only show results for two of the attacks described

in Section 3.1: the optimal direct individual attack

I, and the cycle attack C (the results for other sub-

optimal attacks are similar). Each attack is repeated

a number of times on randomly generated graphs to

increase the statistical significance of the results. We

use the following measures of success for attack X ,

G(X) = Gain = ∆pX
0 /p0,

Ḡ(X) = Normalized Gain = ∆pX
0 /σp,

D(X) = Discrepancy Factor = G(I)/G(X).

D̄(X) = Normalized Discrepancy = Ḡ(I) − Ḡ(X).

The pagerank distribution fp(p) generally affects the

effectiveness of an attack. Figure 1(a) shows pager-

ank distributions for the various random graphs. As

can be seen, Random has a (near) Normal distribu-

tion, compared with BA and MWDTA which have

power-law type distributions in which MWDTA ap-

pears to have a slightly fatter tail than BA.

Some detailed results on the effectiveness of the at-

tacks are shown in Figure 1: (b) shows how connec-

tivity (number of edges) in Random graphs with dif-

ferent p affects the attack; (c) shows different graph

types; (b,c) show the dependence on the prominence

of the attackers, and (d) on the prominence of the vic-

tim; (e) shows the dependence on α; and, (f) shows

some results for the rank (as opposed to the pager-

ank). We give a summary of the results below.

Higher Density: All attacks decrease in magni-

tude (new edges have little additional effect when the

graph is already dense).

Graph type: Prominence of attackers has (by far)

the largest impact in Random graphs, then BA and

MWDTA. (Pageranks in Random graphs are “con-

centrated” around the mean, so any bias in the vic-

tim’s pagerank results in it becoming extreme. This

is less so for BA and even less so for MWDTA.).

Higher Prominence of Attackers: Stronger attack.

Higher Prominence of Victim: Attacks become less

effective and D(C) decreases (diminishing returns).

Lower α: D(C) increases (it is more costly to divert

from the individual attack).

Rank: For random graphs, an attack usually results

in a top ranking for the victim, which is not usually

the case for BA and MWDTA graphs.

5 Discussion

We have shown that the best attack is the direct in-

dividual attack, in particular: any organized struc-

ture among the attackers reduces the impact of the

attack; links that cycle back to attackers in an at-

tempt to boost their pageranks are detrimental. The

discrepancy between the optimal individual attack

and suboptimal attacks can strongly depend on the

graph type through the initial pagerank distribution.

Our results indicate conditions that offer resistance

to rank manipulation: dense, power-low type graphs

in which victims already have high rank, attackers

have low rank and α is small. Our analysis has been

focused on increasing a page’s rank (pagerank ma-

nipulation) in the entire graph, i.e., the victims rank

is increased for every query. The underlying model is

that the query identifies a set of nodes (based on text

and anchor text), which defines an induced subgraph

of the original graph. However, the nodes are ranked

according to pagerank in the original graph. This

model has the feature that pageranks do not need
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to be recomputed for the specific query. An alterna-

tive approach is to order the nodes with respect to

the pageranks in the induced subgraph (hence these

pageranks would need to be recomputed for every

query). Such a model would mean that one attempts

to boost the pagerank with respect to a specific query

and not others. Our analysis does not apply to this

model, and it is no longer true that the optimal at-

tack is the direct individual attack. The following

example (with a single attacker) illustrates the issue.

v0

X X

X

v1

(a) Original graph.

X

v0

X

X

X

v1

X

(b) Direct attack.

X

v0

X

X

X

v1

X

X

X

(c) Indirect attack.

In (a) we show the original graph, where X will be

the query text and the attacker wants to boost the

rank of v0 with respect to X . In (b) we show the

subgraph induced by the direct attack, where the at-

tacker places X in its page as well as in the anchor

text of the link. In the resulting induced subgraph,

the rank of v0 is not the highest. The benefit of the

non-direct attack in (c) is that other nodes that point

to v0 get included into the induced subgraph. Thus

while the flow of rank from v1 to v0 is decreased, this

is more than compensated for by the additional rank

contribution from the newly included nodes. A bet-

ter attack would arise if v1 added another link to v0.

In fact for any attack in which v1 has k links to v1,

a strictly better attack with k + 1 links is possible.

In this example, there is no optimal attack. In gen-

eral, we can formulate this notion by saying that the

attacker should add the minimum number of links to

all nodes with paths to the victim which do not con-

tain the query text, and hence would not be included

in the subgraph. The attackers should then place as

many parallel direct links as feasible. The end effect

is to include all nodes with paths to the victim with

a minimum diversion of page rank. Of course, such a

huge attack is not very practical, and an interesting

question is to consider the optimal attack under this

model when each attacker has a fixed budget of links.

The PageRank algorithm favors attacks from

groups that are not well connected, which makes it

harder to detect the attack, and accountability in

such an attack formation becomes an issue: who is

responsible for the attack? Different variations of the

PageRank algorithm may suffer a similar fate if they

propagate the pagerank in a similar way (for exam-

ple Topic-Sensitive PageRank [8], provided that the

attacking group is considered relevant to the query).

In order to avoid such a fate (a dilemma faced by

any ranking method open to manipulation by small

groups), either one must change the ranking func-

tion or somehow exclude the attacking group from the

search engine’s database. While such an approach is

a reasonable way to deal with private companies at-

tempting to manipulate rankings based on their own

views, it is not very democracy-friendly to arbitrarily

remove certain pages from a search engine.

As discussed in [6], the PageRank algorithm makes

certain assumptions about the user navigation pat-

terns and the web structure that may not apply to

the Web anymore. [6] considers the effect of dan-

gling nodes in the pagerank computation and pro-

vides methods to adjust for them. They also point

out that users will rarely (if ever) navigate to one of

several billion pages uniformly – they may not even

know that these pages exist. In fact, users gener-

ally start from known sites and navigate from there.

Hence, random navigation is more likely to bring

them to one of these “anchor” sites. The HostRank

algorithm [6] uses this assumption to choose a set of
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anchor sites, and they show that such an approach

is more resistant to attacks. A related issue is that

of navigation along links from a site. One is more

likely to trust a link on a highly ranked page, and

one is more likely to follow a link to a highly ranked

page. For example, it might be much more proba-

ble to follow one of the links from a search engine

or a news Web site than a regular web page. The

probability to navigate from a page in the PageRank

algorithm is independent of a page’s rank, and the

link one selects to navigate is random. A plausible

alternative is that the probability to navigate from

a page should be proportional to the page’s pager-

ank, and the probability to use a particular outgoing

link is proportional to the pagerank of the destina-

tion page. Such a navigation model would lead to an

equation (analogous to (1)) of the form

pi = καpi

∑

(vj ,vi)∈E

p2
j

∑

(vj ,vk)∈E

pk

+
1 − α

N
.

More effort could be spent how the transition prob-

abilities generally affect the pageranks and their ma-

nipulability. [6] discusses such issues for nodes with

unknown outgoing links and [15] uses the amount of

traffic flow through the nodes to model the transi-

tion probabilities. It would be interesting to see what

the optimal attack with such ranking algorithms is.

In short, objective methods for the selection of the

anchor sites or more plausible navigation models de-

serves closer examination. One must also bear in

mind (see for example [6]) that the computational

complexity of the algorithm is also an important

practical consideration for any ranking algorithm.

Other factors, which we do not study here, might

be significant to the success of an attack. [7] argues

that anchor text pointing to a page gives informa-

tion regarding the subject matter of that page, and

relationships between different pages. For example,

Google may consider both the pagerank and the fre-

quency of keywords in links pointing to a page when

computing the score of the page. Google bombs in

the past used the same keywords when pointing to

the attacked page, i.e., the bombing links were corre-

lated in that they all had the same keywords, whereas

in general, links pointing to a website would not dis-

play such a correlation. If some linear combination of

these two factors is then used in the final score, it will

favor attacks over the natural Web behavior. If some

small group of sites use a specific keyword to point

to a victim, it is unlikely that this groups’s sites are

unrelated, and one could (for example) add pseudo-

links among these sites, since the expection would be

that they participate in some group structure. As

our results show, these pseudo-links will reduce the

magnitude of the attack. One could go so far as to

say that if after the addition of such pseudo-links in

the graph, the pagerank distribution does not change

significantly, then the ranking algorithm should be

more resistant to manipulation.

The analysis of the optimal attack structure pro-

vides a new tool for looking at resistance to link ma-

nipulation. Such metrics and an understanding of op-

timal attack formations for other algorithms should

be fruitful directions for future work.
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Figure 1: Experimental Results for n = 1000.
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